MakeItFrom.com
Menu (ESC)

C26800 Brass vs. C81500 Copper

Both C26800 brass and C81500 copper are copper alloys. They have 66% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C26800 brass and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 310 to 650
350

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 930
1090
Melting Onset (Solidus), °C 900
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
320
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
82
Electrical Conductivity: Equal Weight (Specific), % IACS 30
83

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 45
41
Embodied Water, L/kg 320
310

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 11 to 22
11
Strength to Weight: Bending, points 13 to 21
12
Thermal Diffusivity, mm2/s 37
91
Thermal Shock Resistance, points 10 to 22
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 64 to 68.5
97.4 to 99.6
Iron (Fe), % 0 to 0.050
0 to 0.1
Lead (Pb), % 0 to 0.15
0 to 0.020
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 31 to 36
0 to 0.1
Residuals, % 0
0 to 0.5