MakeItFrom.com
Menu (ESC)

C26800 Brass vs. C95410 Bronze

Both C26800 brass and C95410 bronze are copper alloys. They have 66% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C26800 brass and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 310 to 650
620 to 740

Thermal Properties

Latent Heat of Fusion, J/g 180
230
Maximum Temperature: Mechanical, °C 130
230
Melting Completion (Liquidus), °C 930
1040
Melting Onset (Solidus), °C 900
1030
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 120
59
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
13
Electrical Conductivity: Equal Weight (Specific), % IACS 30
14

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 45
54
Embodied Water, L/kg 320
390

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 11 to 22
21 to 25
Strength to Weight: Bending, points 13 to 21
20 to 22
Thermal Diffusivity, mm2/s 37
16
Thermal Shock Resistance, points 10 to 22
22 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Copper (Cu), % 64 to 68.5
83 to 85.5
Iron (Fe), % 0 to 0.050
3.0 to 5.0
Lead (Pb), % 0 to 0.15
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
1.5 to 2.5
Zinc (Zn), % 31 to 36
0
Residuals, % 0
0 to 0.5