MakeItFrom.com
Menu (ESC)

C26800 Brass vs. S46800 Stainless Steel

C26800 brass belongs to the copper alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C26800 brass and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 53 to 91
79
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 310 to 650
470

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 130
920
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 30
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
12
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 45
37
Embodied Water, L/kg 320
130

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 22
17
Strength to Weight: Bending, points 13 to 21
18
Thermal Diffusivity, mm2/s 37
6.1
Thermal Shock Resistance, points 10 to 22
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 64 to 68.5
0
Iron (Fe), % 0 to 0.050
76.5 to 81.8
Lead (Pb), % 0 to 0.15
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.070 to 0.3
Zinc (Zn), % 31 to 36
0
Residuals, % 0 to 0.3
0