MakeItFrom.com
Menu (ESC)

C27200 Brass vs. 5082 Aluminum

C27200 brass belongs to the copper alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C27200 brass and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
67
Elongation at Break, % 10 to 50
1.1
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
25
Shear Strength, MPa 230 to 320
210 to 230
Tensile Strength: Ultimate (UTS), MPa 370 to 590
380 to 400
Tensile Strength: Yield (Proof), MPa 150 to 410
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 920
640
Melting Onset (Solidus), °C 870
560
Specific Heat Capacity, J/kg-K 390
910
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
32
Electrical Conductivity: Equal Weight (Specific), % IACS 31
110

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.9
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
670 to 870
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 13 to 20
39 to 41
Strength to Weight: Bending, points 14 to 19
43 to 45
Thermal Diffusivity, mm2/s 37
54
Thermal Shock Resistance, points 12 to 20
17 to 18

Alloy Composition

Aluminum (Al), % 0
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 62 to 65
0 to 0.15
Iron (Fe), % 0 to 0.070
0 to 0.35
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0
0 to 0.15
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 34.6 to 38
0 to 0.25
Residuals, % 0
0 to 0.15