MakeItFrom.com
Menu (ESC)

C27200 Brass vs. 6005 Aluminum

C27200 brass belongs to the copper alloys classification, while 6005 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C27200 brass and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 10 to 50
9.5 to 17
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 230 to 320
120 to 210
Tensile Strength: Ultimate (UTS), MPa 370 to 590
190 to 310
Tensile Strength: Yield (Proof), MPa 150 to 410
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 920
650
Melting Onset (Solidus), °C 870
610
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
180 to 200
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
54
Electrical Conductivity: Equal Weight (Specific), % IACS 31
180

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
77 to 550
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 13 to 20
20 to 32
Strength to Weight: Bending, points 14 to 19
28 to 38
Thermal Diffusivity, mm2/s 37
74 to 83
Thermal Shock Resistance, points 12 to 20
8.6 to 14

Alloy Composition

Aluminum (Al), % 0
97.5 to 99
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 62 to 65
0 to 0.1
Iron (Fe), % 0 to 0.070
0 to 0.35
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0.6 to 0.9
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 34.6 to 38
0 to 0.1
Residuals, % 0
0 to 0.15