MakeItFrom.com
Menu (ESC)

C27200 Brass vs. 7108A Aluminum

C27200 brass belongs to the copper alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C27200 brass and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 10 to 50
11 to 13
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 230 to 320
210
Tensile Strength: Ultimate (UTS), MPa 370 to 590
350
Tensile Strength: Yield (Proof), MPa 150 to 410
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 130
210
Melting Completion (Liquidus), °C 920
630
Melting Onset (Solidus), °C 870
520
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
36
Electrical Conductivity: Equal Weight (Specific), % IACS 31
110

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.1
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
610 to 640
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 13 to 20
33 to 34
Strength to Weight: Bending, points 14 to 19
38
Thermal Diffusivity, mm2/s 37
59
Thermal Shock Resistance, points 12 to 20
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 62 to 65
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.070
0 to 0.3
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 34.6 to 38
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15