MakeItFrom.com
Menu (ESC)

C27200 Brass vs. ACI-ASTM CE8MN Steel

C27200 brass belongs to the copper alloys classification, while ACI-ASTM CE8MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is ACI-ASTM CE8MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10 to 50
29
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 370 to 590
750
Tensile Strength: Yield (Proof), MPa 150 to 410
500

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
21
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.2
Embodied Energy, MJ/kg 45
58
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
190
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
620
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 20
27
Strength to Weight: Bending, points 14 to 19
23
Thermal Diffusivity, mm2/s 37
4.2
Thermal Shock Resistance, points 12 to 20
21

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
22.5 to 25.5
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.070
56 to 66.4
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.5
Nickel (Ni), % 0
8.0 to 11
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0