MakeItFrom.com
Menu (ESC)

C27200 Brass vs. AISI 204 Stainless Steel

C27200 brass belongs to the copper alloys classification, while AISI 204 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is AISI 204 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10 to 50
23 to 39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 230 to 320
500 to 700
Tensile Strength: Ultimate (UTS), MPa 370 to 590
730 to 1100
Tensile Strength: Yield (Proof), MPa 150 to 410
380 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 130
850
Melting Completion (Liquidus), °C 920
1410
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 45
35
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
240 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
360 to 2940
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 20
27 to 40
Strength to Weight: Bending, points 14 to 19
24 to 31
Thermal Diffusivity, mm2/s 37
4.1
Thermal Shock Resistance, points 12 to 20
16 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.070
69.6 to 76.4
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
7.0 to 9.0
Nickel (Ni), % 0
1.5 to 3.0
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0