MakeItFrom.com
Menu (ESC)

C27200 Brass vs. AISI 442 Stainless Steel

C27200 brass belongs to the copper alloys classification, while AISI 442 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is AISI 442 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10 to 50
23
Poisson's Ratio 0.31
0.27
Rockwell B Hardness 53 to 86
83
Shear Modulus, GPa 40
78
Shear Strength, MPa 230 to 320
370
Tensile Strength: Ultimate (UTS), MPa 370 to 590
580
Tensile Strength: Yield (Proof), MPa 150 to 410
310

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 130
960
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
22
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 45
32
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
250
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 20
21
Strength to Weight: Bending, points 14 to 19
20
Thermal Diffusivity, mm2/s 37
5.8
Thermal Shock Resistance, points 12 to 20
20

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
18 to 23
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.070
74.1 to 82
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0