MakeItFrom.com
Menu (ESC)

C27200 Brass vs. EN 1.4845 Stainless Steel

C27200 brass belongs to the copper alloys classification, while EN 1.4845 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is EN 1.4845 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10 to 50
38
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
78
Shear Strength, MPa 230 to 320
410
Tensile Strength: Ultimate (UTS), MPa 370 to 590
600
Tensile Strength: Yield (Proof), MPa 150 to 410
240

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 130
1050
Melting Completion (Liquidus), °C 920
1400
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
25
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.3
Embodied Energy, MJ/kg 45
61
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 20
21
Strength to Weight: Bending, points 14 to 19
20
Thermal Diffusivity, mm2/s 37
4.0
Thermal Shock Resistance, points 12 to 20
14

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.070
48.2 to 57
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0