MakeItFrom.com
Menu (ESC)

C27200 Brass vs. EN 1.4864 Stainless Steel

C27200 brass belongs to the copper alloys classification, while EN 1.4864 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is EN 1.4864 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10 to 50
33
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
75
Shear Strength, MPa 230 to 320
430
Tensile Strength: Ultimate (UTS), MPa 370 to 590
650
Tensile Strength: Yield (Proof), MPa 150 to 410
260

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 920
1390
Melting Onset (Solidus), °C 870
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.3
Embodied Energy, MJ/kg 45
75
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
170
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 20
23
Strength to Weight: Bending, points 14 to 19
21
Thermal Diffusivity, mm2/s 37
3.3
Thermal Shock Resistance, points 12 to 20
17

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.070
41.7 to 51
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
33 to 37
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0