MakeItFrom.com
Menu (ESC)

C27200 Brass vs. EN 1.4872 Stainless Steel

C27200 brass belongs to the copper alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10 to 50
28
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 230 to 320
620
Tensile Strength: Ultimate (UTS), MPa 370 to 590
950
Tensile Strength: Yield (Proof), MPa 150 to 410
560

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 130
1150
Melting Completion (Liquidus), °C 920
1390
Melting Onset (Solidus), °C 870
1340
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
17
Density, g/cm3 8.1
7.6
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
230
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
780
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 13 to 20
35
Strength to Weight: Bending, points 14 to 19
28
Thermal Diffusivity, mm2/s 37
3.9
Thermal Shock Resistance, points 12 to 20
21

Alloy Composition

Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.070
54.2 to 61.6
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
8.0 to 10
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0