MakeItFrom.com
Menu (ESC)

C27200 Brass vs. EN 1.5510 Steel

C27200 brass belongs to the copper alloys classification, while EN 1.5510 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is EN 1.5510 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10 to 50
11 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 230 to 320
310 to 380
Tensile Strength: Ultimate (UTS), MPa 370 to 590
450 to 1600
Tensile Strength: Yield (Proof), MPa 150 to 410
310 to 520

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 920
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
51
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 320
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
46 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
260 to 710
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 20
16 to 57
Strength to Weight: Bending, points 14 to 19
17 to 39
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 12 to 20
13 to 47

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.25 to 0.3
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 62 to 65
0 to 0.25
Iron (Fe), % 0 to 0.070
97.9 to 99.149
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0