MakeItFrom.com
Menu (ESC)

C27200 Brass vs. Grade 17 Titanium

C27200 brass belongs to the copper alloys classification, while grade 17 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is grade 17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 10 to 50
27
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
38
Shear Strength, MPa 230 to 320
180
Tensile Strength: Ultimate (UTS), MPa 370 to 590
270
Tensile Strength: Yield (Proof), MPa 150 to 410
210

Thermal Properties

Latent Heat of Fusion, J/g 170
420
Maximum Temperature: Mechanical, °C 130
320
Melting Completion (Liquidus), °C 920
1660
Melting Onset (Solidus), °C 870
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 20
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.7
36
Embodied Energy, MJ/kg 45
600
Embodied Water, L/kg 320
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
68
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
220
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 13 to 20
17
Strength to Weight: Bending, points 14 to 19
21
Thermal Diffusivity, mm2/s 37
9.3
Thermal Shock Resistance, points 12 to 20
21

Alloy Composition

Carbon (C), % 0
0 to 0.080
Copper (Cu), % 62 to 65
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.070
0 to 0.2
Lead (Pb), % 0 to 0.070
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Titanium (Ti), % 0
99.015 to 99.96
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0
0 to 0.4