MakeItFrom.com
Menu (ESC)

C27200 Brass vs. Grade 6 Titanium

C27200 brass belongs to the copper alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 10 to 50
11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
39
Shear Strength, MPa 230 to 320
530
Tensile Strength: Ultimate (UTS), MPa 370 to 590
890
Tensile Strength: Yield (Proof), MPa 150 to 410
840

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 130
310
Melting Completion (Liquidus), °C 920
1580
Melting Onset (Solidus), °C 870
1530
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 120
7.8
Thermal Expansion, µm/m-K 20
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.7
30
Embodied Energy, MJ/kg 45
480
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
92
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
3390
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 13 to 20
55
Strength to Weight: Bending, points 14 to 19
46
Thermal Diffusivity, mm2/s 37
3.2
Thermal Shock Resistance, points 12 to 20
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 62 to 65
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.070
0 to 0.5
Lead (Pb), % 0 to 0.070
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0
0 to 0.4