MakeItFrom.com
Menu (ESC)

C27200 Brass vs. C82800 Copper

Both C27200 brass and C82800 copper are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 10 to 50
1.0 to 20
Poisson's Ratio 0.31
0.33
Rockwell B Hardness 53 to 86
45 to 85
Shear Modulus, GPa 40
46
Tensile Strength: Ultimate (UTS), MPa 370 to 590
670 to 1140
Tensile Strength: Yield (Proof), MPa 150 to 410
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 130
310
Melting Completion (Liquidus), °C 920
930
Melting Onset (Solidus), °C 870
890
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
18
Electrical Conductivity: Equal Weight (Specific), % IACS 31
19

Otherwise Unclassified Properties

Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 45
190
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
590 to 4080
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 13 to 20
21 to 36
Strength to Weight: Bending, points 14 to 19
20 to 28
Thermal Diffusivity, mm2/s 37
36
Thermal Shock Resistance, points 12 to 20
23 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.5 to 2.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 62 to 65
94.6 to 97.2
Iron (Fe), % 0 to 0.070
0 to 0.25
Lead (Pb), % 0 to 0.070
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 34.6 to 38
0 to 0.1
Residuals, % 0
0 to 0.5