MakeItFrom.com
Menu (ESC)

C27200 Brass vs. S42035 Stainless Steel

C27200 brass belongs to the copper alloys classification, while S42035 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10 to 50
18
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 53 to 86
76
Shear Modulus, GPa 40
77
Shear Strength, MPa 230 to 320
390
Tensile Strength: Ultimate (UTS), MPa 370 to 590
630
Tensile Strength: Yield (Proof), MPa 150 to 410
430

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 130
810
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
27
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 45
34
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
100
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
460
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 20
22
Strength to Weight: Bending, points 14 to 19
21
Thermal Diffusivity, mm2/s 37
7.2
Thermal Shock Resistance, points 12 to 20
22

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.070
78.1 to 85
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0
1.0 to 2.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.3 to 0.5
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0