MakeItFrom.com
Menu (ESC)

C27200 Brass vs. S44626 Stainless Steel

C27200 brass belongs to the copper alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C27200 brass and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10 to 50
23
Poisson's Ratio 0.31
0.27
Rockwell B Hardness 53 to 86
83
Shear Modulus, GPa 40
80
Shear Strength, MPa 230 to 320
340
Tensile Strength: Ultimate (UTS), MPa 370 to 590
540
Tensile Strength: Yield (Proof), MPa 150 to 410
350

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 920
1440
Melting Onset (Solidus), °C 870
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
14
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 270
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 810
300
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 13 to 20
19
Strength to Weight: Bending, points 14 to 19
19
Thermal Diffusivity, mm2/s 37
4.6
Thermal Shock Resistance, points 12 to 20
18

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 62 to 65
0 to 0.2
Iron (Fe), % 0 to 0.070
68.1 to 74.1
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 34.6 to 38
0
Residuals, % 0 to 0.3
0