MakeItFrom.com
Menu (ESC)

C27400 Brass vs. 328.0 Aluminum

C27400 brass belongs to the copper alloys classification, while 328.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C27400 brass and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 370 to 650
200 to 270

Thermal Properties

Latent Heat of Fusion, J/g 170
510
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 920
620
Melting Onset (Solidus), °C 870
560
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
30
Electrical Conductivity: Equal Weight (Specific), % IACS 31
99

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.7
7.8
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 320
1070

Common Calculations

Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
51
Strength to Weight: Axial, points 13 to 23
21 to 28
Strength to Weight: Bending, points 14 to 21
28 to 34
Thermal Diffusivity, mm2/s 37
50
Thermal Shock Resistance, points 12 to 22
9.2 to 12

Alloy Composition

Aluminum (Al), % 0
84.5 to 91.1
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 61 to 64
1.0 to 2.0
Iron (Fe), % 0 to 0.1
0 to 1.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
0.2 to 0.6
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 35.6 to 39
0 to 1.5
Residuals, % 0
0 to 0.5