MakeItFrom.com
Menu (ESC)

C27400 Brass vs. 6012 Aluminum

C27400 brass belongs to the copper alloys classification, while 6012 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C27400 brass and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 370 to 650
220 to 320

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 920
640
Melting Onset (Solidus), °C 870
570
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
45
Electrical Conductivity: Equal Weight (Specific), % IACS 31
140

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1170

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
48
Strength to Weight: Axial, points 13 to 23
22 to 32
Strength to Weight: Bending, points 14 to 21
29 to 37
Thermal Diffusivity, mm2/s 37
62
Thermal Shock Resistance, points 12 to 22
10 to 14

Alloy Composition

Aluminum (Al), % 0
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 61 to 64
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.050
0.4 to 2.0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0
0.6 to 1.4
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 35.6 to 39
0 to 0.3
Residuals, % 0
0 to 0.15