MakeItFrom.com
Menu (ESC)

C27400 Brass vs. A206.0 Aluminum

C27400 brass belongs to the copper alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C27400 brass and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 370 to 650
390 to 440

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 920
670
Melting Onset (Solidus), °C 870
550
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
30
Electrical Conductivity: Equal Weight (Specific), % IACS 31
90

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1150

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
46
Strength to Weight: Axial, points 13 to 23
36 to 41
Strength to Weight: Bending, points 14 to 21
39 to 43
Thermal Diffusivity, mm2/s 37
48
Thermal Shock Resistance, points 12 to 22
17 to 19

Alloy Composition

Aluminum (Al), % 0
93.9 to 95.7
Copper (Cu), % 61 to 64
4.2 to 5.0
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 35.6 to 39
0 to 0.1
Residuals, % 0
0 to 0.15