MakeItFrom.com
Menu (ESC)

C27400 Brass vs. AISI 205 Stainless Steel

C27400 brass belongs to the copper alloys classification, while AISI 205 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.

For each property being compared, the top bar is C27400 brass and the bottom bar is AISI 205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 370 to 650
800 to 1430

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
880
Melting Completion (Liquidus), °C 920
1380
Melting Onset (Solidus), °C 870
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 21
18

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.0
7.6
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 45
37
Embodied Water, L/kg 320
150

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 13 to 23
29 to 52
Strength to Weight: Bending, points 14 to 21
25 to 37
Thermal Shock Resistance, points 12 to 22
16 to 29

Alloy Composition

Carbon (C), % 0
0.12 to 0.25
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 61 to 64
0
Iron (Fe), % 0 to 0.1
62.6 to 68.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
14 to 15.5
Nickel (Ni), % 0
1.0 to 1.7
Nitrogen (N), % 0
0.32 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 35.6 to 39
0
Residuals, % 0 to 0.3
0