MakeItFrom.com
Menu (ESC)

C27400 Brass vs. AWS E33-31

C27400 brass belongs to the copper alloys classification, while AWS E33-31 belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C27400 brass and the bottom bar is AWS E33-31.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 370 to 650
810

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Melting Completion (Liquidus), °C 920
1380
Melting Onset (Solidus), °C 870
1330
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
36
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
6.0
Embodied Energy, MJ/kg 45
86
Embodied Water, L/kg 320
260

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13 to 23
28
Strength to Weight: Bending, points 14 to 21
24
Thermal Shock Resistance, points 12 to 22
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
31 to 35
Copper (Cu), % 61 to 64
0.4 to 0.8
Iron (Fe), % 0 to 0.1
24.7 to 34.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 35.6 to 39
0
Residuals, % 0 to 0.3
0