MakeItFrom.com
Menu (ESC)

C27400 Brass vs. EN AC-46500 Aluminum

C27400 brass belongs to the copper alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C27400 brass and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
74
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
28
Tensile Strength: Ultimate (UTS), MPa 370 to 650
270

Thermal Properties

Latent Heat of Fusion, J/g 170
520
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 920
610
Melting Onset (Solidus), °C 870
520
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 120
100
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
26
Electrical Conductivity: Equal Weight (Specific), % IACS 31
81

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 2.7
7.6
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 320
1030

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
49
Strength to Weight: Axial, points 13 to 23
26
Strength to Weight: Bending, points 14 to 21
32
Thermal Diffusivity, mm2/s 37
41
Thermal Shock Resistance, points 12 to 22
12

Alloy Composition

Aluminum (Al), % 0
77.9 to 90
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 61 to 64
2.0 to 4.0
Iron (Fe), % 0 to 0.1
0 to 1.3
Lead (Pb), % 0 to 0.050
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 35.6 to 39
0 to 3.0
Residuals, % 0
0 to 0.25