MakeItFrom.com
Menu (ESC)

C27400 Brass vs. SAE-AISI 1080 Steel

C27400 brass belongs to the copper alloys classification, while SAE-AISI 1080 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C27400 brass and the bottom bar is SAE-AISI 1080 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 370 to 650
770 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 31
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 320
46

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13 to 23
27 to 31
Strength to Weight: Bending, points 14 to 21
24 to 26
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 12 to 22
25 to 29

Alloy Composition

Carbon (C), % 0
0.75 to 0.88
Copper (Cu), % 61 to 64
0
Iron (Fe), % 0 to 0.1
98.1 to 98.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 35.6 to 39
0
Residuals, % 0 to 0.3
0