MakeItFrom.com
Menu (ESC)

C27400 Brass vs. K93500 Alloy

C27400 brass belongs to the copper alloys classification, while K93500 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C27400 brass and the bottom bar is K93500 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 370 to 650
490 to 810

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Melting Completion (Liquidus), °C 920
1430
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
30
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.7
4.7
Embodied Energy, MJ/kg 45
65
Embodied Water, L/kg 320
130

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 13 to 23
17 to 27
Strength to Weight: Bending, points 14 to 21
17 to 23
Thermal Shock Resistance, points 12 to 22
15 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
5.0
Copper (Cu), % 61 to 64
0
Iron (Fe), % 0 to 0.1
61.4 to 63
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
32
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 35.6 to 39
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.3
0