MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. 6262 Aluminum

C28000 Muntz Metal belongs to the copper alloys classification, while 6262 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 10 to 45
4.6 to 10
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 230 to 330
170 to 240
Tensile Strength: Ultimate (UTS), MPa 330 to 610
290 to 390
Tensile Strength: Yield (Proof), MPa 150 to 370
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
160
Melting Completion (Liquidus), °C 900
650
Melting Onset (Solidus), °C 900
580
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
44
Electrical Conductivity: Equal Weight (Specific), % IACS 31
140

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 320
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
530 to 940
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
48
Strength to Weight: Axial, points 11 to 21
29 to 39
Strength to Weight: Bending, points 13 to 20
35 to 42
Thermal Diffusivity, mm2/s 40
69
Thermal Shock Resistance, points 11 to 20
13 to 18

Alloy Composition

Aluminum (Al), % 0
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 59 to 63
0.15 to 0.4
Iron (Fe), % 0 to 0.070
0 to 0.7
Lead (Pb), % 0 to 0.3
0.4 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 36.3 to 41
0 to 0.25
Residuals, % 0
0 to 0.15