C28000 Muntz Metal vs. AISI 316L Stainless Steel
C28000 Muntz Metal belongs to the copper alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is AISI 316L stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
200 |
Elongation at Break, % | 10 to 45 | |
9.0 to 50 |
Poisson's Ratio | 0.31 | |
0.28 |
Rockwell B Hardness | 55 to 78 | |
80 |
Shear Modulus, GPa | 40 | |
78 |
Shear Strength, MPa | 230 to 330 | |
370 to 690 |
Tensile Strength: Ultimate (UTS), MPa | 330 to 610 | |
530 to 1160 |
Tensile Strength: Yield (Proof), MPa | 150 to 370 | |
190 to 870 |
Thermal Properties
Latent Heat of Fusion, J/g | 170 | |
290 |
Maximum Temperature: Mechanical, °C | 120 | |
870 |
Melting Completion (Liquidus), °C | 900 | |
1400 |
Melting Onset (Solidus), °C | 900 | |
1380 |
Specific Heat Capacity, J/kg-K | 390 | |
470 |
Thermal Conductivity, W/m-K | 120 | |
15 |
Thermal Expansion, µm/m-K | 21 | |
16 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 28 | |
2.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 31 | |
2.6 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 23 | |
19 |
Density, g/cm3 | 8.0 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
3.9 |
Embodied Energy, MJ/kg | 46 | |
53 |
Embodied Water, L/kg | 320 | |
150 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 27 to 240 | |
77 to 230 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 110 to 670 | |
93 to 1880 |
Stiffness to Weight: Axial, points | 7.2 | |
14 |
Stiffness to Weight: Bending, points | 20 | |
25 |
Strength to Weight: Axial, points | 11 to 21 | |
19 to 41 |
Strength to Weight: Bending, points | 13 to 20 | |
18 to 31 |
Thermal Diffusivity, mm2/s | 40 | |
4.1 |
Thermal Shock Resistance, points | 11 to 20 | |
12 to 25 |
Alloy Composition
Carbon (C), % | 0 | |
0 to 0.030 |
Chromium (Cr), % | 0 | |
16 to 18 |
Copper (Cu), % | 59 to 63 | |
0 |
Iron (Fe), % | 0 to 0.070 | |
62 to 72 |
Lead (Pb), % | 0 to 0.3 | |
0 |
Manganese (Mn), % | 0 | |
0 to 2.0 |
Molybdenum (Mo), % | 0 | |
2.0 to 3.0 |
Nickel (Ni), % | 0 | |
10 to 14 |
Nitrogen (N), % | 0 | |
0 to 0.1 |
Phosphorus (P), % | 0 | |
0 to 0.045 |
Silicon (Si), % | 0 | |
0 to 0.75 |
Sulfur (S), % | 0 | |
0 to 0.030 |
Zinc (Zn), % | 36.3 to 41 | |
0 |
Residuals, % | 0 to 0.3 | |
0 |