MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. AISI 436 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while AISI 436 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 10 to 45
25
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 55 to 78
77
Shear Modulus, GPa 40
77
Shear Strength, MPa 230 to 330
320
Tensile Strength: Ultimate (UTS), MPa 330 to 610
500
Tensile Strength: Yield (Proof), MPa 150 to 370
270

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
880
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 46
38
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
190
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
18
Strength to Weight: Bending, points 13 to 20
18
Thermal Diffusivity, mm2/s 40
6.7
Thermal Shock Resistance, points 11 to 20
18

Alloy Composition

Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
77.8 to 83.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Niobium (Nb), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0