MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. AISI 440B Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while AISI 440B stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 10 to 45
3.0 to 18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 230 to 330
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 330 to 610
740 to 1930
Tensile Strength: Yield (Proof), MPa 150 to 370
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 900
1480
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 46
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
57 to 110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
27 to 70
Strength to Weight: Bending, points 13 to 20
24 to 45
Thermal Diffusivity, mm2/s 40
6.1
Thermal Shock Resistance, points 11 to 20
27 to 70

Alloy Composition

Carbon (C), % 0
0.75 to 1.0
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
78.2 to 83.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0