MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. ASTM A285 Carbon Steel

C28000 Muntz Metal belongs to the copper alloys classification, while ASTM A285 carbon steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is ASTM A285 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 10 to 45
30 to 34
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 230 to 330
250 to 290
Tensile Strength: Ultimate (UTS), MPa 330 to 610
380 to 450
Tensile Strength: Yield (Proof), MPa 150 to 370
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1470
Melting Onset (Solidus), °C 900
1420 to 1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 46
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
94 to 150
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 11 to 21
13 to 16
Strength to Weight: Bending, points 13 to 20
15 to 17
Thermal Diffusivity, mm2/s 40
14
Thermal Shock Resistance, points 11 to 20
12 to 14