MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. ASTM Grade LC2-1 Steel

C28000 Muntz Metal belongs to the copper alloys classification, while ASTM grade LC2-1 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is ASTM grade LC2-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 10 to 45
20
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 330 to 610
810
Tensile Strength: Yield (Proof), MPa 150 to 370
630

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
450
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
46
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 31
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
5.0
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 46
25
Embodied Water, L/kg 320
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
150
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
1040
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 11 to 21
29
Strength to Weight: Bending, points 13 to 20
25
Thermal Diffusivity, mm2/s 40
12
Thermal Shock Resistance, points 11 to 20
24

Alloy Composition

Carbon (C), % 0
0 to 0.22
Chromium (Cr), % 0
1.4 to 1.9
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
92.5 to 95.3
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.55 to 0.75
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
2.5 to 3.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.045
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0