MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. EN 1.4317 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while EN 1.4317 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is EN 1.4317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 10 to 45
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 330 to 610
860
Tensile Strength: Yield (Proof), MPa 150 to 370
630

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
770
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 46
33
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
1010
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
31
Strength to Weight: Bending, points 13 to 20
26
Thermal Diffusivity, mm2/s 40
7.0
Thermal Shock Resistance, points 11 to 20
30

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
78.7 to 84.5
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
3.5 to 5.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0