MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. EN 1.4325 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while EN 1.4325 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is EN 1.4325 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 10 to 45
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 230 to 330
450
Tensile Strength: Ultimate (UTS), MPa 330 to 610
650
Tensile Strength: Yield (Proof), MPa 150 to 370
210

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
930
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 46
42
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
230
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
23
Strength to Weight: Bending, points 13 to 20
21
Thermal Diffusivity, mm2/s 40
4.3
Thermal Shock Resistance, points 11 to 20
15

Alloy Composition

Carbon (C), % 0
0.030 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
67.8 to 75
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0