MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. EN 1.4477 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 10 to 45
22 to 23
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 230 to 330
550 to 580
Tensile Strength: Ultimate (UTS), MPa 330 to 610
880 to 930
Tensile Strength: Yield (Proof), MPa 150 to 370
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
20
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
940 to 1290
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
31 to 33
Strength to Weight: Bending, points 13 to 20
26 to 27
Thermal Diffusivity, mm2/s 40
3.5
Thermal Shock Resistance, points 11 to 20
23 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 59 to 63
0 to 0.8
Iron (Fe), % 0 to 0.070
56.6 to 63.6
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0