MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. EN 1.4938 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 10 to 45
16 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 230 to 330
540 to 630
Tensile Strength: Ultimate (UTS), MPa 330 to 610
870 to 1030
Tensile Strength: Yield (Proof), MPa 150 to 370
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
750
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 46
47
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
1050 to 1920
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
31 to 37
Strength to Weight: Bending, points 13 to 20
26 to 29
Thermal Diffusivity, mm2/s 40
8.1
Thermal Shock Resistance, points 11 to 20
30 to 35

Alloy Composition

Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
80.5 to 84.8
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0