MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. EN AC-43400 Aluminum

C28000 Muntz Metal belongs to the copper alloys classification, while EN AC-43400 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
72
Elongation at Break, % 10 to 45
1.1
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 330 to 610
270
Tensile Strength: Yield (Proof), MPa 150 to 370
160

Thermal Properties

Latent Heat of Fusion, J/g 170
540
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 900
600
Melting Onset (Solidus), °C 900
590
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
32
Electrical Conductivity: Equal Weight (Specific), % IACS 31
110

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 2.7
7.8
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 320
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
180
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
54
Strength to Weight: Axial, points 11 to 21
29
Strength to Weight: Bending, points 13 to 20
36
Thermal Diffusivity, mm2/s 40
59
Thermal Shock Resistance, points 11 to 20
12

Alloy Composition

Aluminum (Al), % 0
86 to 90.8
Copper (Cu), % 59 to 63
0 to 0.1
Iron (Fe), % 0 to 0.070
0 to 1.0
Lead (Pb), % 0 to 0.3
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 36.3 to 41
0 to 0.15
Residuals, % 0
0 to 0.15