MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. N06985 Nickel

C28000 Muntz Metal belongs to the copper alloys classification, while N06985 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 10 to 45
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
80
Shear Strength, MPa 230 to 330
480
Tensile Strength: Ultimate (UTS), MPa 330 to 610
690
Tensile Strength: Yield (Proof), MPa 150 to 370
260

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 900
1350
Melting Onset (Solidus), °C 900
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 31
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
55
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 2.7
8.8
Embodied Energy, MJ/kg 46
120
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
250
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 11 to 21
23
Strength to Weight: Bending, points 13 to 20
21
Thermal Diffusivity, mm2/s 40
2.6
Thermal Shock Resistance, points 11 to 20
16

Alloy Composition

Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 59 to 63
1.5 to 2.5
Iron (Fe), % 0 to 0.070
18 to 21
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0