MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. S20432 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while S20432 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is S20432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 10 to 45
45
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 55 to 78
81
Shear Modulus, GPa 40
76
Shear Strength, MPa 230 to 330
400
Tensile Strength: Ultimate (UTS), MPa 330 to 610
580
Tensile Strength: Yield (Proof), MPa 150 to 370
230

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
900
Melting Completion (Liquidus), °C 900
1410
Melting Onset (Solidus), °C 900
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 46
38
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
21
Strength to Weight: Bending, points 13 to 20
20
Thermal Diffusivity, mm2/s 40
4.0
Thermal Shock Resistance, points 11 to 20
13

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 59 to 63
2.0 to 3.0
Iron (Fe), % 0 to 0.070
66.7 to 74
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
3.0 to 5.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0