MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. S41041 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while S41041 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is S41041 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 10 to 45
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 230 to 330
560
Tensile Strength: Ultimate (UTS), MPa 330 to 610
910
Tensile Strength: Yield (Proof), MPa 150 to 370
580

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
29
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 46
31
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
140
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
860
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 11 to 21
32
Strength to Weight: Bending, points 13 to 20
27
Thermal Diffusivity, mm2/s 40
7.8
Thermal Shock Resistance, points 11 to 20
33

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0.13 to 0.18
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
84.5 to 87.8
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.4 to 0.6
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0