MakeItFrom.com
Menu (ESC)

C28000 Muntz Metal vs. S44735 Stainless Steel

C28000 Muntz Metal belongs to the copper alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C28000 Muntz Metal and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 10 to 45
21
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
82
Shear Strength, MPa 230 to 330
390
Tensile Strength: Ultimate (UTS), MPa 330 to 610
630
Tensile Strength: Yield (Proof), MPa 150 to 370
460

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 21
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
21
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
4.4
Embodied Energy, MJ/kg 46
61
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 240
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 670
520
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 11 to 21
23
Strength to Weight: Bending, points 13 to 20
21
Thermal Shock Resistance, points 11 to 20
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0 to 0.070
60.7 to 68.4
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 36.3 to 41
0
Residuals, % 0 to 0.3
0