MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. 444.0 Aluminum

C28500 Muntz Metal belongs to the copper alloys classification, while 444.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is 444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 20
25
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 520
190
Tensile Strength: Yield (Proof), MPa 380
83

Thermal Properties

Latent Heat of Fusion, J/g 170
500
Maximum Temperature: Mechanical, °C 110
170
Melting Completion (Liquidus), °C 900
610
Melting Onset (Solidus), °C 890
600
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 100
160
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
40
Electrical Conductivity: Equal Weight (Specific), % IACS 33
140

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 2.7
7.9
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 320
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
39
Resilience: Unit (Modulus of Resilience), kJ/m3 700
49
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 20
53
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
28
Thermal Diffusivity, mm2/s 33
67
Thermal Shock Resistance, points 17
8.8

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.5
Copper (Cu), % 57 to 59
0 to 0.25
Iron (Fe), % 0 to 0.35
0 to 0.6
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.35
Silicon (Si), % 0
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 39.5 to 43
0 to 0.35
Residuals, % 0
0 to 0.15