MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. 7021 Aluminum

C28500 Muntz Metal belongs to the copper alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 20
9.4
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 40
26
Shear Strength, MPa 320
270
Tensile Strength: Ultimate (UTS), MPa 520
460
Tensile Strength: Yield (Proof), MPa 380
390

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 110
200
Melting Completion (Liquidus), °C 900
630
Melting Onset (Solidus), °C 890
510
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 100
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
38
Electrical Conductivity: Equal Weight (Specific), % IACS 33
120

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 320
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
41
Resilience: Unit (Modulus of Resilience), kJ/m3 700
1110
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
47
Strength to Weight: Axial, points 18
44
Strength to Weight: Bending, points 18
45
Thermal Diffusivity, mm2/s 33
59
Thermal Shock Resistance, points 17
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 57 to 59
0 to 0.25
Iron (Fe), % 0 to 0.35
0 to 0.4
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 39.5 to 43
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15