MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. ACI-ASTM CB7Cu-1 Steel

C28500 Muntz Metal belongs to the copper alloys classification, while ACI-ASTM CB7Cu-1 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is ACI-ASTM CB7Cu-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20
5.7 to 11
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 520
960 to 1350
Tensile Strength: Yield (Proof), MPa 380
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 890
1500
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 100
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 33
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 46
38
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 700
1500 to 3590
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 18
34 to 48
Strength to Weight: Bending, points 18
28 to 35
Thermal Diffusivity, mm2/s 33
4.6
Thermal Shock Resistance, points 17
32 to 45

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15.5 to 17.7
Copper (Cu), % 57 to 59
2.5 to 3.2
Iron (Fe), % 0 to 0.35
72.3 to 78.4
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0
3.6 to 4.6
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 39.5 to 43
0
Residuals, % 0 to 0.9
0