MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. EN 1.0580 Steel

C28500 Muntz Metal belongs to the copper alloys classification, while EN 1.0580 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is EN 1.0580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20
5.6 to 25
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 320
340 to 360
Tensile Strength: Ultimate (UTS), MPa 520
540 to 620
Tensile Strength: Yield (Proof), MPa 380
290 to 450

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 110
400
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 100
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 33
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 22
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 46
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
31 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 700
230 to 540
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 18
19 to 22
Strength to Weight: Bending, points 18
19 to 21
Thermal Diffusivity, mm2/s 33
14
Thermal Shock Resistance, points 17
17 to 20

Alloy Composition

Carbon (C), % 0
0 to 0.22
Copper (Cu), % 57 to 59
0
Iron (Fe), % 0 to 0.35
97.5 to 100
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Zinc (Zn), % 39.5 to 43
0
Residuals, % 0 to 0.9
0