MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. EN 1.4477 Stainless Steel

C28500 Muntz Metal belongs to the copper alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 20
22 to 23
Poisson's Ratio 0.3
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 320
550 to 580
Tensile Strength: Ultimate (UTS), MPa 520
880 to 930
Tensile Strength: Yield (Proof), MPa 380
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 110
1100
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 100
13
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 33
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
20
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 46
52
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 700
940 to 1290
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 18
31 to 33
Strength to Weight: Bending, points 18
26 to 27
Thermal Diffusivity, mm2/s 33
3.5
Thermal Shock Resistance, points 17
23 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 57 to 59
0 to 0.8
Iron (Fe), % 0 to 0.35
56.6 to 63.6
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 39.5 to 43
0
Residuals, % 0 to 0.9
0