MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. C95400 Bronze

Both C28500 Muntz Metal and C95400 bronze are copper alloys. They have 58% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 20
8.1 to 16
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 520
600 to 710
Tensile Strength: Yield (Proof), MPa 380
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 110
230
Melting Completion (Liquidus), °C 900
1040
Melting Onset (Solidus), °C 890
1030
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 100
59
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
13
Electrical Conductivity: Equal Weight (Specific), % IACS 33
14

Otherwise Unclassified Properties

Base Metal Price, % relative 22
27
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 46
53
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 700
250 to 560
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 18
20 to 24
Strength to Weight: Bending, points 18
19 to 22
Thermal Diffusivity, mm2/s 33
16
Thermal Shock Resistance, points 17
21 to 25

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Copper (Cu), % 57 to 59
83 to 87
Iron (Fe), % 0 to 0.35
3.0 to 5.0
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.5
Zinc (Zn), % 39.5 to 43
0
Residuals, % 0
0 to 0.5