MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. ACI-ASTM CA40F Steel

C31400 bronze belongs to the copper alloys classification, while ACI-ASTM CA40F steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is ACI-ASTM CA40F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
13
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 270 to 420
770
Tensile Strength: Yield (Proof), MPa 78 to 310
550

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
750
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1010
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 180
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 43
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.5
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 42
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
94
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
790
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.7 to 13
28
Strength to Weight: Bending, points 11 to 14
24
Thermal Diffusivity, mm2/s 54
7.2
Thermal Shock Resistance, points 9.6 to 15
28

Alloy Composition

Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.1
81.6 to 88.3
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.7
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0.2 to 0.4
Zinc (Zn), % 5.8 to 11.2
0
Residuals, % 0 to 0.4
0