MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. AISI 409 Stainless Steel

C31400 bronze belongs to the copper alloys classification, while AISI 409 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is AISI 409 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
24
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 180 to 240
270
Tensile Strength: Ultimate (UTS), MPa 270 to 420
420
Tensile Strength: Yield (Proof), MPa 78 to 310
200

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
710
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 180
25
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 43
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
6.5
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 42
28
Embodied Water, L/kg 310
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
83
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
100
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.7 to 13
15
Strength to Weight: Bending, points 11 to 14
16
Thermal Diffusivity, mm2/s 54
6.7
Thermal Shock Resistance, points 9.6 to 15
15

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.1
84.9 to 89.5
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.7
0 to 0.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.75
Zinc (Zn), % 5.8 to 11.2
0
Residuals, % 0 to 0.4
0