MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. EN 1.0920 Steel

C31400 bronze belongs to the copper alloys classification, while EN 1.0920 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is EN 1.0920 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 29
23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 180 to 240
340
Tensile Strength: Ultimate (UTS), MPa 270 to 420
540
Tensile Strength: Yield (Proof), MPa 78 to 310
380

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 180
50
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 43
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.4
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 42
22
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
110
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
380
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.7 to 13
19
Strength to Weight: Bending, points 11 to 14
19
Thermal Diffusivity, mm2/s 54
14
Thermal Shock Resistance, points 9.6 to 15
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 87.5 to 90.5
0 to 0.35
Iron (Fe), % 0 to 0.1
96.1 to 99.08
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0.9 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.7
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 5.8 to 11.2
0
Residuals, % 0 to 0.4
0